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PREFACE
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ON TWO-SIDED CONFIDENCE AND TOLERANCE LIMITS
FOR NORMAL DISTRIBUTIONS

I. INTRODUCTION

In many cases of statistical inference it is more

meaningful and informative to construct confidence intervals

for parameters under investigation rather than to make tests

of hypotheses. This requires some understanding of the con-

cept of confidence intervals. Coupled with the under-

standing of confidence intervals is the understanding of

tolerance limits. Frequently one finds that confidence

limits are used when tolerance limits should be used, or

confidence limits are computed with the general interpreta-

tion of tolerance limits.

In this report confidence limits and two types of

tolerance limits are described for normal distributions

giving some theorems on which the concept and construction

of these limits are based. Differences and similarities be-

tween the three types of limits are pointed out. Procedures

are presented for computing two-sided confidence and toler-

ance limits for means and for simple linear regression data

(simultaneous and non-simultaneous limits for each type).

For comparative purposes, the six different types of limits

are computed on a numerical regression problem.

Finally, an additional bibliography is included for

reference on confidence and tolerance limits when infor-

mation other than what is given in the paper is desired.
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II. CONFIDENCE LIMITS

Suppose a random sample of n observations (Yl,Y2,....

Y ) is drawn from a normal population in an attempt to ob-
n
tain some information about the mean of the population, p.

A point estimate of the oarameter p is the sample mean, Y.

Although the estimate is unbiased it is not very meaningful

without some measure of the possible error. Thus, frequently

one determines an upper and a lower limit or a confidence

Interval which is rather certain to contain p.

The general method of construction of confidence

limits is as follows (4). Suppose one has a family of pop-

ulations each with a known density function p(y:q,), y being

the random variable and c the parameter in question. Sup-

pose one has an estimator g to estimate ep, where g is a

function of the observed y, and suppose that one can derive

the density function of g, p(g:cO). Now if one assumes that

c equals some particular value, say p', then this value can

be inserted and the density function p(g:cp'), the distribu-

tion of g under this assumption, can he obtained.

Under the assumption ep = -- ', there will be a P, point

for the distribution of g, say gl' which will be determined

by

Pr[ he Jam Issum pi(go re d = P1 .

Likewise, under the same assumption there will be a P2point

6



for the distribution of g, say g determined by

Pr[g q,'] J p fp(g:Vl) dg = 1- P2 .(2.1)

82

The area under the density function below g2 is equal to

and the area between g, and 92 is then equal to (P2 -P1 ) =

y, say.

Now, if the value of 0' is changed, the corresponding

values of gl and are changed. Therefore g and g2 can be

regarded as functions of T, say gl(m) and g2(p), respectively.

In principle, one can plot these functions g1 4) and g

against c (See Figure 1).

Now assume that the true value of cp is actually o"

Then g () and take the values gl(cpo) and (po ) , re-

spectively, and Prg (cp)= P1 9 Prg 8(c) = l.4'2

which imply

Pr[ I o ) < g < g2 P2)]= P2 P = Y. (2.2)

Now suppose that a sample observation was taken and that a

numerical value of the estimate, say go, was computed. Then,

in Figure 1, a horizontal line can be drawn parallel to the

4 axis through the point go on the g axis. Let this line

intercept the two curves 82 (w) and gl(q) at points A and B.

Project the points A and B on to the W axis to give c and !.

One asserts that a (P 2 -Pl) confidence interval for C, is

7
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92 (

D - g(op

CP

Figure 1. Plot of g (cp) and g2 (cP) Against cp for the General

Method of Construction of Confidence Limits.
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)i.e.

< < = P2 -P1 = . (2.3)

The justification for this assertion is as follows. Enter

the true value of &o on the cp axis; erect the perpendicular

at this point to cut the curves g1 (q)) at C and g2 (c) at D.

At both these points c has the values cpo; so, at C, =

glcpo), and, at D, g = g 2 (cPo). The horizontal lines through

C and D will intersect theg axis at gl(co) and 2 re-

spectively. Now p0o may be anywhere on the T axis, but if AB

intersects CD, then g0 must lie in the interval (gl(qo),

and simultaneously the interval (_,-) must include

CPO. In other words, the two statements

(i) go lies in the interval (gl(Tpo), g2 (cpo)),

and

(ii) the interval (cp,-) includes co,

are always true simultaneously or not true simultaneously.

But by (2.2) the event (i) has probability (P2-PI); so the

event (ii) must also have probability (P2-PI1). Hence one can

write

Pr[2 < o < P2"P =Y

and this completes the justification of (2.3).

At the point A, the function g2 (cp) has - cp and takes

on the value g, i.e, g2(q) = go. Now 92 (v) was defined as

9

.. .. .... . .. .. . . ... .. . .. .. 2



the solution of (2.1), so one can use this equation to find

; c is obtained by solving

f p(gc) dg - I-P 2 = Pri 9 8 o 0: = (

go

Similarly, at the point B, the function gl(cp) has cp = and

takes the value go; so gl() = S and - can be found as the

solution -f

Sgo

p(g:cp) dg = P1 = Pr[g :S go; q =

~00

To determine for instances confidence intervals for

the population mean one must seek a random variable which

depends on p. no other unknown parameters, and the sample

random variables, whose distribution is known. For the

normally distributed variable with a unknown the quantity

5

is such a random variable having Student's-t distribution

with n-I degrees of freedom (df), where

n _ .( y Y.2
i=l -

n (n -l)

a2 being an unbiased estimate of a2 .

10



Before proceeding with the derivation of the confi-

dence interval, we shall recall the definition of Student's -

t distribution (5). A random variable has Student's-t dis-

tribution with n-I df if it has the same distribution as the

quotient (u4T-)/v, where u and v are independent random

variables, u having a normal distribution with mean 0 and

standard deviation 1, and v2 having a chi-square (X2) distri-

bution with n-I df. More precisely, ((Y-p),/n)/ is normally

distributed with mean 0 and variance 1, and s2/o2 is distri-

buted (independently) as X2 /n-I with n-I df.

From tables of the Student's-t distribution one de-

termines two percentiles, t(I-y)/ 2 ,n.1 and t(l+y)/2,n.1 ,

such that*

rV

t(l+y)/2,n-I
r[t(l-y)/2,n.1<t<t(l+y)/2,n1]= /~ ~-)d

,t(1.-y)/2,n-1

where-
F(KL (14-)_

2 n- 1f(t'n-l) = .A-~ '(jL

*In hypothesis testing one rejects the hyDothesis that =

4 if t falls outside this interval where the alternate
h othesis is that p 0. This represents a test of size
l-y.
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Or, more precisely,

PZS1.t-ly)f2,n-l (l+y)/2,n- Y

This inequality is then converted to

Pr~yt~ly)/,n- -Ii Y-t(l.y)/2 ,n-. I - y. (2.4)

This intervalla confidence interval for p, is given in most

standard statistical texts (16). Owing to the fact that

Student's-t distribution is symmetric, t(ly)/ 2 ... -

-t(l+y)/2,n.l* This fact will be used throughout the re-

mainder of the paper.

For the case where a is known one can use (2.4) for

the computation of the confidence interval by simply re-

placing s by a and using for df 6 0 t(= )/201  - Z(+y)/2'

the (I+y)/2 normal deviate, since Student's-t distribution

approaches the normal distribution for large degrees of free-

dom.

The interpretation of confidence limits is as follows.

If many samples of size n were drawn from the same popula-

tion and 100y% upper and lower limits were determined from

each sample, then one would expect 100y% of these "random

intervals" to cover the Dint, . Or, if an experimenter as-

serts p 2joj that an interval includes the parameter, P.

12



he should be making a correct statement lOOy% of the time.

In practice, one usually has only one sample from which to

determine an interval estimate.

One should remember in the above discussion and

throughout the rest of the paper, that upper and lower

limits are computed but that frequently it is more conven-

ient to speak of the gyjJa formed by the limits.

Moment generating functions may be used to show that

a linearly transformed normal random variable is normally

distributed and that any linear combination of independent

normal random variables has a normal distribution (5). The

following general procedure (Procedure A) may then be used

for the computation of confidence limits on any parameter

or linear function of parameters q, from normal populations

[e8g - = - I P9 ) P orw T

Procedure A

I. Obtain an estimator g of cr

e.g. g = Y, g = Y -Y2 or g b

*population regression coefficient

** ZYi"- (E X)(Ei)/n Sxy
b~ so

-X
2  (EX )2 /n Sx2

i
n

where E =
i=l

13



2. Obtain the variance of g and write it in the form

02/n,

e.g. var Y 0 =2/n, var(Y-Y )( + 2,

or var(b) 
= 02 /Sx

2

3. Obtain an unbiased estimate of o
2 (usually called g2)

e.g. £y2 _ (Iyi)2/n Sy2

82 = ,Y , • ... = .-
n-I n-I

Sy2 + Sy2

82 = n1 2
n 1+n 2 -2

or s2 Sy2 _ (Sxy)2/Sx2
or ~ =n-2

4. Confidence interval estimate for cp* =

g±t +(1+y)/2,f

where t(l+y)/2,f is the (i+y)/2 percentage point

of Student's-t distribution with f df (in the

examples f-n-l, n 2-2, or n-2, respectively)

*The use of n' will be explained in the section on tolerance
limits. 2!

**Assuming that both populations have a common 02

Remember t -t
(l-y)/2,f (l+y)/2,f

14



III. TOLERANCE LIMITS

A. Gjnral Meaning of Tolerance Limits

Suppose a random sample of n observations (Y LY29...

Yn) is drawn from a normal population with unknown mean, p,

and unknown variance, a2 . Also suppose the experimenter is

not interested in estimating p as a single point, nor is he

interested in finding confidence limits for p. He is more

concerned about predicting individual future values and

would like to see limits where he can say with reasonable

assurance that most of his future values will fall within.

If he constructed these limits, which one calls tolerance

limits, on his control data (normal range), then individual

values falling outside these limits could be considered as

being "abnormal" with a reasonable level of confidence.

Before proceeding to the details of two different

types of tolerance limits, the following remarks are made

to give the reader a better understanding of the general

nature of the limits. For the moment, consider a normally

distributed population with a known population mean, p, and

a k population variance, a2. One finds the two-sided

tolerance limits which include lo0P% of the population as

p-Zo and p+Zo since

15
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+Zo

p (x) 
dx = p

P-ZG

where p(x) represents the density function of the normal!

distribution and Z is a numerical value which depends on the

chosen value of P. Since the population parameters are

known, the above statement can be made with 100% confidence,

and one hardly has a statistical problem. For example, one

is 100% confident that the tolerance limits, 1 ± l.96a, con-

tain the central 95% of the normal population.

Usually the parameters p and 02 are not known, only

the estimates Y and s2 . If i and a are replaced by Y and s

one would get Y + 1.96s as Limits in the above example. In

repeated sampling from the same population these limits

would vary about the population tolerance limits, 1.96o,

and for some samples the limits would include jss than 95%

of the population and for other samples more than 95%. To

be reasonably sure that I00P% of the population lie between

the sample tolerance limits one must find a value k>Z such

that there is a good chance that Y + ks will include 100P%

of the population.

Two types of tolerance limits will be discussed:

tolerance limits without confidence probability [(P)TL], and

tolerance limit. H confidenee probability [(Py)TL].

16
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B. Tolerance Limits Without Confidence Probability [(P)T

The problem here is to determine k so that for re-

peated samples of size n the average proportion in + ks ii-

(-1,2,...) is equal to P. Wilks (20) first determined such

a k, but the proof given in this paper is the proof by I.R.

Savage found in an article by Proschan (14).

Let us consider as tolerance limits L and L the
1 2

quantities Y + ks (two-sided limits). The proportion P1 of

the normal population between these limits is

Y+ks

p3 = _ e(YI,)2/202 dY

Y-kB

We wish to determine k so that E(P') = P, where

E(P') f fP'f(Ys) ds dY

00 0

and f(Ys) is the distribution of Y and a given by

F (n-1) (n-l)/2 en2 -[n(-,)2+(n-l)s2]/2C2

Using the linear transformation, Z = (Y-p)/C, E(P') can be

written as

17
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Y+ks

E(P') =C 1  f f fe-Z2f2 dZ sn-2 e-[n9i2+(n-l)g2]/2d ds

0 -00 Y-k

where4)/ (free of k).

4 TIF 2 nr rp'

The conditions for differentiating under the integral hold

and thus by Leibniz's rule one has

E(P') C J f~ fl se-e (Yk)/+,,('ks)2/2],nfl

o -00

.en?+(n-)82] /2 dY de

Jr e4('~ Y+ks/~t2+(n-l+k2n/n ~2]/2

O-00

8n-I did

00 00

en-I -~ d

Let u =[4in-+ Y t (ks/A4 +t)] P then

18



Icf fe._U22 -1 -[n-l+k2n,(n+l)] S2/2 d

0 -00

Go Go

aF.(P) c nl e[n-l+k2n/(n+1)]s2,2 do

C2

Let ~ [nl+k2 n/

= ~~ F ~n-l2 (n/ ~/f.1k~ +.]n2d

11



t2
dt

But the integrand is essentially Student's-t density func-

tion with n-I df, and when k and k = - and +00, respective-C. 2

ly, ia(P') = 1. Hence c5 must be identical to the constant of

Student's-t distribution. Hence for E(P') = P it follows that

ri = t(I.P)/2,n-l and t2 t- (l+P)/2,n..l Since t(lP)/2,n.1

r -(1+P)/2,n-l, k = ±t(l+P)/2,n_/n4-- for tolerance limits

symmetric about Y.

The interval estimates

Yi ± t (l+P)/2 ,n-l si (3.1)

which, on the average, include iO0M of the population are

referred to as tolerance limits without confidence orob-

ability or in this paDer simply as (P)TL. Thus, when many

samples of the same size are taken from the population and

a (F)TL is calculated each time (same P), these intervals

will n the average include iO0% of the population. If the

exnerimenter asserts a nriori that an interval estimate con-

tains l00* of the ponulation, he stands a good chance that

20
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the interval contains in the neighborhood of IOOP%, but his

estimate may include considerably more or considerably less

than the desired lOOP%. All one does know is that the

average of many of such interval estimates (expected value)

contains 100P% of the population.

At this point it is not easy to see how one could

generalize the above result in order to compute a (P)TL for

any variate for which there is a normally distributed es-

timate of the mean with variance u2/n' and the estimate of

the variance is independently distributed as 02x2/f with f df.

The approach one can use in generalizing the procedure will

be shown in the next section when considering the similarity

between confidence limits and (P)TL (see page 31).

C. Tolerance Limits With Confidence Probabi ity [(v.P)TLI

For many situations the above tolerance interval

estimate is not too useful without some measure of the

possible error associated with it. Another factor which may

disturb some experimenters about the (P)TL is that per in-

terval estimate one has little assurance of always containing

lOOP% or more of the population. Thus, tolerance limits

with confidence probability came into being. In this paper

these tolerance limits will be referred to as (y,P)TL, based

21



on the notation in (8)*.

The problem is to find that value of k in

g+ks

A- 1 -- e 2c2 dg

g-ks

such that Pr[A>?P] = y. A is the proportion of the popula-

tion aculy inclUde in a given interval, y is the re-

quired confidence coefficient, and P is 
the proportion of

the population required to be included within 
the limits

g + ks where g is an estimate of p, the mean of 
the normal

population.

Wald and Wolfowitz (17) have shown how values of

k may be determined to an extremely good 
approximation when

P and y are specified. They considered only the case in

which a random sample of n is drawn from 
a single normal

population of unknown mean and unknown 
variance (f = n-l).

Wallis (18) extended their results to cover any 
normally

distributed variable for whose mean there 
is a normally

*lIn(8), at least a proportion y of the population 
is asserted

to lie within the tolerance limits with 
confidence prob-

ability @. This notation was 'teed in (17) and may be en-

countered in other texts or articles.

22



distributed estimate with variance o2 /n' (Wallis called it

N') and for whose variance there is an estimate independently

distributed as G2 X2 /f (f not necessarily equal to n-I where

n is the sample size for estimating the mean). The n' is

the effective number of observations; thus, the ef'ective

number of observations for a certain statistic which when

divided into the variance of an observation, gives the

variance of the statistic.

Wallis summarized the Wald-Wolfuwitz derivation of

tolerance factors without assuming any connection between n'

and f, and the following is based on his summary.

Given a statistic g having the following character-

istics:

(i) It is normally distributed

(ii) Its expected value p is the mean of a

normal population with unknown variance a
2

(iii)It has variance equal to o2/n', where n' is known,

and an independent estimate s2 of 02 is distributed

as 02 2/f with f degrees of freedom.

The distribution of A above is clearly independent

of p and a, since cp merely determines the point about which

g will be distributed and the variance of s is proportional

to a. so without loss of generality take - 0 and o = 1 in

the further computation.

Pr[A P] depends on P. k. n' and n. To emphasize

23



the dependence on P and It for given n' and n, let F(P,k)

Pr(A2:P). Also, denote the conditional probability of A's

exceeding P for a particular value of g by F(P,kjg), i.e.

If F'(Pqk~g) is known, then F(P,k) may be found by

forming the product

[F(P~k s)J X e-ng2 dg]

which represents the probability that g will lie in an in-

terval of length dg and that A will exceed P for given g.

If one integrates out g. the result is also equal to the

expectation of F(P,kl'g) as follows:

F(P k) n1 _fF(P~klg) _k~g dg =E F(Pklg)

F(P,k) can be approximated by expanding F(P,klg) in a Taylor

series* at 8=0 and taking expectations.

Since F(P,klg) is an even function of g, its odd

derivatives are zero, and the Taylor expansion about g0O is

g 2,82 F 9 4 OF
1F(P~k~g) = F(P,kJ0) + - + - + * (3.2)

2!~ 4 4!g

with all derivatives to be evaluated at g=O.

;;Wald and Wolfowitz show the validity of the Taylor expan-
sion.

24



Taking expectations, F(P,k) = EF(Pkg) =

F(P,kLO) + -I- +L 4. + _.- (3.3)
2n' Og

2  8ne 2 'g 4

since the second and fourth moments of g, which is normally

2
distributed with mean 0 and variance /n', are i/n' and 3/n,

respectively.

On comparing the right hand sides of (3.2) and (3.3),

one sees that (3.2) will oecome identical with (3.3), except

for terms involving the second and higher even powers of

I/n'. Thus if one sets g = -17fT then

F(P,klVVT7) e F(P,k)

This means that in order to obtain F(Pk) one has

to evaluate F(P,kVI-ThT ). There is a unique value of r such

that

~ll/n'+r

fe-z2/2 dZ - P

4n ~-r

since the left side is a monotonic increasing function of r.

The r corresponds with the half length ks of an interval

centered at 1/ n4r for which A = P.

The problem is to select k large enough, in the

light of the sampling distribution of s, to make the prob-

ability y that ks will be #_ last r. Thus,

25
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F(P,k' A/l7i T ) = Pr(s>r k) = Pr(x 2 >fr 2 k2 ) = y

since2 = f 2 /2 and here a - I. This probability can be

evaluated from tables of the chi-square distribution, after

first finding r from tables of the normal distribution using

a trial and error method or Newton's method (19).

After P and y are given, one solves for k in

X2 = fr2 /k2 , where y2  is that number for whichl-yf 1-y,f

pr[X2 > X2]f = y; then k = ru where u = 11 (-- y,fJ l-y,f

The interpretation of these limits is as follows.

When many random samples of the same size are taken from the

normal population and a (y,P)TL is calculated each time,

then in 100y% of the cases these limits will include at

least 1O0P% of the population.

The following procedure (Procedure B) may be used

to compute (y,P)TL for any variate for which there is a

normally distributed estimate of the mean with variance

a2/nI and an estimate of the variance independently dis-

tributed as a2X2/f with f df:

Procedure B

1. Obtain an estimate g of the population mean

(e.g. g = Y, g = 2 )
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2. Obtain var(s) and write it in the form 2n

(e.g. var(Y)=(!)Cy2, var(Y1 *2 1=(L.2+

3. Obtain an unbiased estimate of a2(usually called

S29 with f df)

4. Decide on reasonable values of y and P

5. Compute r:

1_2Z21 p/ 3
r = Z (l+P)/2[1 + In (14P) 2

from Biowker (2), where Z (1+P)/2 is the (1+iP)/2

percentage point of the standard normal dis-

tribut ion

6. Compute u:

u J77 where X' is that percentile
l-y~f 1-yof

of the X2-distribution with f df which will be ex-

ceeded by chance 100y% of the time.

*Assuming that both populations have a coummon variance 2

**Dixon and Hassey (6) give 4rly ,- in place of u. How-

ever the Fl-y,-,n-2 should read Fy,-,n-2 for the appro-

priate value from their table of percentiles of the F(Z/, 9V2)

distributions. The n-2 is associated with the degrees of

freedom for error in their regression procedure.
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7. Compute k =ru

8. (yP)TL t " kiZ

Step 8 would be modified to read as g ±_ / if

the experimenter were interested in (y,P)TL for future means

based on m observations each (7).

Tabular values were obtained for r and u by Weiss-

berg and Beatty (19), and their values are also given in

Owen's Handbook of Statistical Tables (12). The tabulated

values for r were prepared for a sample of size n from a

single population and are given as r , r(n,P). One needs

to let n = n' when using these tables.

Bowker (2) has shown that for large n' the ex-

pression Z(1 +p)/2 [i + 1/2n'] may be used for r instead of

the expression given in Step 5.

Bowker (3) has tabulated values of k for the special

case where f = n-l.

Situations may arise where p or a is known. In the

event that 4 is known and a is unknown one can use the above

result as k = Z(1+P)/2 u where Z(I+p)/2 is the (l+P)/2 per-

centile noint of the standard normal distribution. If a is

known and p is unknown then the above result is used with -

degrees of freedom (f = 0). The u will become I, and k = r

which depends onlv on n' and P. Regardless of what level of

y is chosen u is always equal to one in the case where a is

known.

Ii
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IV. RE*LATIONSHIP BETWEEN THE VARIOUS LIMITS

A. Contrasts of the LimIts

Figure 2 gives an oversimplified comparison between

the confidence limits, and the tolerance limits [(P)TL and

(y,P)TL] for different sample sizes. The "picture" was drawn

as simply as possible to illustrate the basic concepts, but

the following shortcomings should be realized:

I. At each sample size (except n-), each interval is an

estimate and is not necessarily symmetric about k.

2. At each sample size (except n=-), one should visualize

many confidence interval estimates with 100y% of

them covering p, many (P)TL estimates whose average

interval covers lOOP% of the population, and many

(yP)TL with 100y% of these intervals covering It

least IOO.

3. When a is not known, all estimates mentioned in 2

(above) will usually be of unequal length.

The (P)TL gives an estimate of the intrval p ka

in the same manner as Y gives an estimate of the oint .

The (y,P)TL are in nature comparable to the confidence limits

because these tolerance limits give a "confidence interval"

about an interval (including at least 1OOP% of the popula-

tion), while the confidence limits give a confidence interval

about a 2oint.
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Leen

n=30

Figure~~~~~~~~ 2.Oesmlfe oprsnBtenConfidence Limitsoo

(P)TL, and (Y,P)TL on a Simple Mean for Different

Sample Sizes.
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For a very large sample the confidence limits con-

verge to one point, the parameter (see Figure 2). This can

easily be verified from the previous formulas. As sample

size and degrees of freedom increase for the normal distri-

bution the (y,P)TL and the (P)TL approach essentially two

limiting parameters with 100% confidence including the pro-

portion P of the population.

B. Similarity Between Confidence Limits and Tolerance Limits

The following is based on Proschan's article. Fre-

quently, experimenters are interested in finding a prediction

(or "confidence") interval for an additional observation

from the same oopulation. Most standard statistical texts

(16) show that

t ~E *Y2 _ (LY )2/nl] + -E EY)2/

n 1+n2- 2 1[ 2

is distributed as Student's-t with f = n1 +n2 -2. One may now

use this relationship to find the following prediction in-

terval for the value of one additional observation Y2(n2--):

1, n2

All E =- or
iml i=l
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L

Pr[Yi " t(l1 y)/2 ,nl-1 -(ni+l)fn i< Y2< 1

+ t (I+y)/2,niI 4(i 1+l)/n1 S4] = y (4.1)

where

-Y (Ly ) 2/n
Sl nl1 •

This simnly means that if pairs of samples of size

and 1 for YI and Y2) respectively, are drawn repeatedly,

then 100y% of the Y Is will lie in the above interval. It
2

doesn mean that if one sample of size n (Y1 ) were drawn,

to be followed by the drawing of many additional Y 2s that

100y% of these Y2 Is will lie in the interval.

Notice that the 100y% confidence limits for the

value of one additional observation (4.1) is the same as the

(P)TL (3.1) except for the subscript on t, remembering that

t(l.p)/2,n.l = - t(l+P)/2,n.I . How is this confidence or

prediction interval related to the (P)TL ? An intuitive ex-

planation of their relationship may go as follows. The

Y1 - t(l+y)/2,n -I /(f1n+l al in (4.1) is an estimate of

-± t(l+y)/ 2 ,1 a, and substituting, (4.1) would become

Pr[L-t (1+y)/2  <Y2 < +t( 1 + )/ 2  ] O

This interval is fixed and contains the central 100y% of the

future Y2 1s from the population. Thus each (4.1) is an
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estimate of an interval which contains lOOy% of the popu-

lation. However, this is the definition of (P)TL in Sec-

tion III, replacing y with P. Hence, confidence limits with

confidence coefficient y for a second sample of size one

are identical with tolerance limits that will include a pro-

portion P on the average.

Paulson (13) proves the following simple lemma on

the relationship between confidence limits (y) for a future

random observation and (P) tolerance limits: If confidence

limits U1 (x1 ,...,Xn) and U2 (x 1 ... ,x ) on a probability level

= y are determined for g, a function of a future sample of

k observations, and

u2

P fJ(Q) dg
u 1

then E(P) = y. Let 4](g) dg and (U,U 2 ) dUI dU 2 denote the

distribution of g and U1, U2 resnectively, then by the defi-

nition of expected value

E(P) = f JL \Y(g) d $(U 1 ,U 2 ) dUl dU2 .

00 -CO u 1 g

This triple integral is however exactly the probability that

g will lie between U1 and U2, which by the nature of con-
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fidence limits must equal y, which proves the lemma.

Following the procedure of computing confidence

limits for the next observation, one can quite easily com-

pute (P)TL for any variate for which there is a normally

distributed estimate of the mean with variance o2/n' and

the estimate of the variance is independently distributed

as 02A2/f with f df. For example, the (P)TL for Y1-Y2 when

given n1 observations from the Y population and n2 ob-

servations from the Y2 population is obtained from

It (~~~y ') "-Y'Y)2

Prt (l-P)/ 2 S 1+P/ = P

/Sz (1_ +1 +1+1)
n1 n 2

where s2 is the Dooled sample variance. This expression is

then rearranged as follows:

Y Y z+tI +&' +2 ) < YY1-72
r(1-2)+ (1-P)/2 n I n 2  - Y1-Y2 < (Y1 Y2)

,/Zi+k +2)]
+t(l+rp)/ 2

A summary of the computing procedures for the two-

sided confidence limits and botn types of tolerance limits

on normal populations is given in Table 1.
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TABLE 1. COMPUTATIONAL PROCEDURES OF CONFIDENCE LIMITS,
(P)TL, AND (y,P)TL FOR NORMAL POPULATIONS

Source Parameters Sten # I Step # 2

Confidence upunknown(U) Obtain estimate Obtain var(g)

Limits o2 U g of CP _2/n

it I!

o2 known(K)

(P)TL 4 U Var. g + var. of

02U future single (g)

SU
II If I

o2K

epK
II #5I

o2 U
I, cpl.L( ,,I

cp K

G2K(

(y,P)TL p U Obtain estimate Obtain var(g)

a2U g of p G2/n '

zpU

oy2K

Cp K

o2K
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(Table I continued.)

Source Parameters Step # 3 Step # 4

Confidence !,unknown(U) Obtain estimate of Decide on

Limits G2U U2 (called s2) Y

U

o2known(K)

(P)TL CP U Obtain estimate of Decide on

o2 U o2 (called 92) P

aU

o2 K
, K Obtain estimate of

c2 U U2 (called s2)

CY2K

(yP)T cp U Obtain estimate of Decide on

o2U 02 (called 62) y and P

P U Decide on
It

a2 K P only

K Obtain estimate of Decide on
'l

02U a 2( c a l l e d s2) y and 1"

cpK Decide on

o2K P only
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(Table I continued.)

Source Parameters Step #5*

Confidence unkown(U) Confidence interval of

Limits 02U * g±t(l+y)/2, fr2/nl

U5 oUn

o2 known (K) 
_ _ _ _ _ _ _ _ _ _ _

(2)TL P U (P)TL =

02U g+t(l+p)/2 /s2(l/n ' + )

i, -

gt 2 a 2 (1/n' + I)

_______g+U- (lA-P)/2 ,f'
C2K

(72U ±t(1+P)/ 2 1  2n f4n)

2 ±.t (1+P)/2,00 2(1/n ' + 1)

CPU ._
" +rt +j2in + )

0r2U  rt(1+P)/2 , 2n' 24(n' )2

2 Kr t t( 1 r)/ 2 ,0

U

oj2K

*and **see page 39
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(Table I. continued.)

Source Parameters Step #6 Step #7 Step #8

Confidence punknown (U)

Limits 2U

STI

021known (K)

(P)TL mp U

a2 K

CP K

02 U

zP K

(y,P)TL ;P U f(y,P)TL

T U
2 1 k~r g~k4107

0 2 Uj :L,-y f ______

la K

***See vage 39
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(Table 1 continued.)

* t Xfis the X percentage point o~f Student's-t distribu-

tion with f df.

SForimula as given is not always correct depending on the

p under consideration. See page 34.

X 2 is the percentage point of the X2 distribution
l-y,,f

with f df whiich will be exceeded by chance 100y% of the

time.
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V. LIMITS IN SIMPLE LINEAR REGRESSION

A. Background

In linear regression, Y values are obtained from

several populations, each population being determined by a

corresponding X value. The X variable is fixed or measured

without error. The following &ssumptions are usually made

about the "true" model:

I. The distribution of Y for each X is normal.

2. The mean values of Y lie exactly on the line

. = a + OX.
Py.x

3. The variance of Y, 02 is the same for each X.

4. The Y observations are statistically independent.

The classical "least squares" procedure is used for

"fitting" a line which best describes the linear relation-

ship between the (Xi,Yi) pairs of observations. This pro-

cedure determines values of a and b which minimize

n
SSD = Z (Yi-a-bXi) 2 .

i=l i

The b for the "fitted" line is called the regression co-

efficient, and the a is called the intercept. The line is

called a regression line, and its equation is called a re-

gression equation.
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B. Confidence Limits

1. Non-simultaneous confidence limits

Frequently textbooks give lfOy% confidence limits

on the population mean of Y at a particular Xo value, iY-X_"

The concept of computing confidence limits on a single

normal population is simply applied repeatedly to the Y data

at the different values of X. The intervals are not inde-

pendent of each other because they all depend on the same

regression line. These intervals will be referred to as

non-simultaneous confidence limits (intervals).

The interpretation for any one of these populations

is that if many samples of the same size were drawn from the
ame population of Y's at X° and an interval were constructed

for each sample, then one would expect 100y% of these "ran-

dom intervals" to cover the fixed point p. XO

Procedure A for the computation of confidence limits

may be used repeatedly to compute l0y% non-simultaneous con-

fidence limits for different values of X (call the X under

consideration, X ). The procedure is given below for simple

linear regression problems and will be referred to as Pro-

cedure C.

Procedure C

1. Y= a + bXo0 where
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L *xy- EX Y
b= .. n =x

EX2 . EX) 2  sx2

n

and

a = Y- bX

2. Var(M) a I n (x° ) 2

Sx2

3. 9 / F = SY2  -(Sxy) 2 /Sx2

Y-x n-2

where Sy2  EY2 - (EY)2 /n

4. Conf.4p y +-2 t 16~)2  + sYO-x
4. on.(y. )- + r(1+Y)/2,f In SO2 Y-X

If each confidence limit is considered a function of

X, then the limits define the two branches of a hyperbola

with the fitted line as the diameter. The interval has mini-

mum length for X = X, and its length increases as

increases.

n
all E =

i=l
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2. Simultaneous confidence limits

As mentioned before, repeated use of the non-simul-

taneous confidence limits would result in error because of

the lack of independence of the intervals. In 1929, Working

and Hotelling (22) worked out a procedure whereby they found

a confidence region for an entire regression line. They

computed a confidence region, not an interval, which covered

the whole Lie, not only one point on the line. This pro-

cedure later turned out to be a special case of Scheffe's

simultaneous confidence intervals (15). Wilks (21) gives a

proof of Scheffe's method for simultaneous confidence in-

tervals in his text, and it is his proof that is given in

this paper.

The basic result due to Scheffe is as follows:

Suppose u' = (ul,... ,uk) is a k-dimensional random

variable having normal distribution

N(p Aa 2 )

where p' = (ilP2, ... k) is the vector of the means and

A is the variance-covariance matrix (non-singular) with

elements ai , and a2 is unknown. Let S = residual sum of

squares, then S/g2 is a random variable indevendent of

(u19...,uk ) which follows the chi-square distribution with

f df. Let F be the lOOy% point of the F-distribution
y,k,f
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and let 6 = ,(S/f)(kF We can then state the followingY,klf

theorem: If 0 is the set of all real vectors (cl,...,ck)

where cl,... ,ck are not all zero, the inequalities

,-- cU i - 6A a c c < c < . cu i + 6J/E a c C (5.1)
i i~ iiij~ ii j ij ij ij

hold simultaneously with probability y for all (cl,.... ck)

in 0.

To prove the theorem one should first note that

(u-_,)'A'l(u-p)/o2 = (l 2 ) E aiJ(u i)(u -P ) and S/o2 are
ii j

independent random variables having chi-square distribution

ijwith k and f df, respectively, with a being the elements

of A- . Hence (f/kS) L aij (u P, )(u -P) has F-distribution.i, J (u-i (j

Therefore

P [Z aiJ(u - i)(uj-pj) < 2] y (5.2)

where 6 2 =(kS/f) F
y,k,f

Next Wilks makes use of k-dimensional geometric con-

cepts and terminology. The set of points in the space of

( . '''' P) for which

E aij(ui_ i )(u -p ) < 62
i,j J(j j

is the interior of a 100y% confidence ellipsoid for the

true parameter point (k) centered at (ulh...,uk).

If one considers the set of points in the space of (p.1 ".""

44



k contained between all possible pairs 
of parallel (k-l)-

dimensional hyperplanes tangent to this ellipsoid then this

set of points constitutes the interior of the ellipsoid (5.2)

and the probability associated with this set is y.

Wilks then goes on to show that for any particular

choice of (cl,...,ck) in 0 the two parallel (k-l)-dimensional

hyperplanes in the space of (kl" ' k) having equations

E cP = E cu ±64 a(53
i i i i i i ciJ ijc.(.

are tangent to the ellipsoid

E alJ(ki-uiL)(k j-uj) = 6 2  (5.4)

i,j

Any point ( l'"""9k between the two hyperplanes

(5.3) satisfies (5.1). For the moment let pi-ui = Yi"

Then (5.4) can be written as

E aii (5.5)

and the equation of an arbitrary hyperplane in the siace of

can be written as

E ciyi = d. (5.6)
i

Now one must find the two values of d for which the hyper-

plane (5.6) is tangent to the ellipsoid (5.5). Using a La-

grange multiplier X, one must find the stationary noints in
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the (Yl $y k )-space of

-~X(6 2 - a yiyj) + C y ii,j ii

Differentiating with respect to y one finds

-X aijyi+c =0 or

Y - (lfx) x a c (5.7)
i .1 Lj

Substituting in (5.4) one finds

X = +(1/6)4 a c c (5.8)
i,J ij i j

From (5.8), (5.7), and (5.6) one finds

i,J iji ci

Substituting this value of d in (5.6) and using the fact

that yi= i ui' one obtains (5.3) as the equations of the

two parallel tangent hynerblanes for specified (cl,...,Ck).

This implies (5.1) and hence Droves the theorem.

In this Daner one uses Scheff6's method (S-Method)

of multiple comparison as stated in the preceding theorem

to the family [Ct+O(X-x)J corresponding to the two-dimensional

space I c la+c2 0] , i *e. c 1  1 and c2 = X-X. With this pro-

cedure one can compute confidence limits for any number of

different X values and say that jJ, of the intervals simul-

taneously cover the corresponding p values for 100y% of
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such random confidence regions.

The results from the S-Method show that the same nro-

cedure, Procedure C on page 41, may be used to compute these

simultaneous confidence limits as was used to compute the

non-simultaneous confidence limits with the following M~djfi-

caion: In step 4, the quantity 2 is used instead' Fy,2 ,n-2

of t(l+y)/2,n2*

These simultaneous confidence limits also define the

two branches of a hyperbola with the fitted line as the

diameter. As might be expected, for a given y level, the

branches of the hyperbola for the simultaneous limits are

farther apart than those for the non-simultaneous limits.

C. Non-Simultaneous Tolerance Limits

I. Non-simultaneous (P)TL

Frequently, prediction intervals are also computed

for simple linear regression problems (11). The practical

use of the non-simultaneous (P)TL is rather restricted since

limits, like the non-simultaneous confidence limits, are not

independent of each other. The same is true here as was for

the confidence limits in that the concept of computing a

(P)TL on a single normal population is applied repeatedly to

the Y data at different values of X.

The procedure for comDuting non-simultaneous (P)TL
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is the same as 'rocedure C on page 41 for computing non-

simultaneous colfidence limits with the following modif-

cation: In steD 2 of the procedure the variance of is

02 1 + +
Y .X I n SX2

which takes into consideration the variance associated with

the additional observation.

These non-simultaneous (P)TL also define the two

branches of a hyperbola with the fitted line as the diameter.

With these limits one can rightfully say only that for one

future X. value 100F% of the Y values will on the average

lie within the given limits.

2. lon-simultaneous (y,P)TL

As mentioned before, the (P)TL is simply an estimate

of the interval and it does not give the experimenter any

assurance of including at least a desired proportion of the

population. The more desirable statement would include 11

least O% of the population with a predetermined level of

confidence (y). Whenever textbooks consider tolerance limits

in simple regression, the non-simultaneous (y,P)TL are most

frequently mentioned (1), (6).

Procedure B on page 26 is used repeatedly for different

X values to compute the non-simultaneous (y,P)TL. Again,
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the loci of the tolerance limits may be plotted as a hyper-

bola with the fitted line as diameter. It must be re-

emphasized that these limits are not independent of each

other and hence do not hold for different values of X simul-

taneously. Generally, these limits are farther apart than

the non-simultaneous (P)TL when using a reasonable 100y% con-

fidence level.

D. Simultaneous Tolerance Limits

I. Background

Lieberman (9) first considered the oin re

interval for the response at each of K separate values of the

independent variable when all K predictions must be based

upon the original fitted model. He describes three methods,

one exact and two approximate. For the exact method the

probability is 100y% that all K future observations fall

within their respective intervals, for the aporoximate

methods the probability is greater than 100y%.

These prediction regions apply only to a specified

number K of future responses at each of K separate X values.

However, when K is unknown and possibly arbitrarily large

these results are no longer valid. A solution to the problem

of arbitrary K is given in terms of simultaneous tolerance

limits (intervals) on the distribution of future observations.

In this paper two types of simultaneous tolerance intervals
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will he considered-simltaneous (P)TL and simultaneous (y,P)

TL.

2. Simultaneous (P)TL

In an attempt to overcome the limitation of the non-

simultaneous (P)TL on Y at a particular Xo, simultaneous

(P)TL should perhaps be considered in simple linear re-

gression. With these simultaneous (P)TL, one may say that

2_ the averae 1OOP of the Y population values are in-

cluded in each interval and that this statement may be

made for any number of different X values simultane-

ously.

The computing procedure for these simultaneous (P)TL

is analogous to the computation of simultaneous confidence

limits. Thus Procedure C on page 41, procedure for com-

putation of non-simultaneous confidence limits, may be used

to compute the simultaneous (P)TL with the following two

modifications: In Step 2,

var(Y) 1Z2  l + I+ 
V .X n SX2

and in Step 4, .12Fy2n. 2 is used instead ofy,(I7)/2n-2

As expected, for a given P and y, the branches of the

hyperbola for the simultaneous (P)TL are farther apart than

those for the non-simultaneous (P)TL.
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3. Simultaneous (y,P)TL

Lach of the previously mentioned tolerance limits

procedures in simple linear regression had its limitation.

However, one can see that the limits for each procedure

were getting wider (unfortunately), but closer to what seems,

in most cases, to be in what the experimenter is actually

interested. At least, each successive procedure was better

than simply using non-simultaneous confidence Limits and

pretending that one had limits which included a given per-

centage of the population at some chosen level of confidence.

Simultaneous (y,P)TL appear to be the proper limits for

most experimenters to use.

The aoproach used in the naper for the derivation of

the simultaneous (yP)TL in regression is the simplest of

four approaches presented by Lieberman and Miller (1n).

The authors made use of the Bonferroni inequality P[ABJ

1 - P[Ac] - P[Bc], where Ac and Bc denote the complement of

A and B, respectively. In this approach they employed the

inequality to combine simultaneous confidence intervals on

the regression means, as obtained by Scheffe, and the con-

fidence interval for the standard deviation to construct a

two-sided simultaneous (y,P)TL. The two-sided confidence

region for the regression line is obtained from
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(Xi)

Sy .x(2F(l+Y)/2,2,n-2 + Sx2

for all X] = (I+y)/ 2 . (5.9)

An upper bound on a is obtained from a one-sided chi-square

confidence interval:

Prn-2 1±X (.5.10)Pr S s Y X[ 2 = 2"
-CY- "(l-7)/2,n-2_

where x2  is the (1-y)/2 percentage point of the
(l-y)/2,n-2

chi-square distribution for n-2 df. With use of the

Bonferroni inequality the confidence statements (5.9) and

(5.10) are combined into a joint confidence statement with

probability greater than or equal to y as:

r [a+8(x-) _ z(l+P)/2 o-a-b(X-:)I < Sy.X (2F(L+y)/2,2,n.2

1 + X'2 + z (+P)/2 n2 for all Y >I'll (1-+)/,n2 P]

where Z(l+P)/2 is the (I+P)/2 Dercentage point of the stand-

ard normal distribution.

Lieberman and -ller describe the simultaneous (y,P)

TL in simple regression, as follows: "If for a single re-

gression Line [ Y=a+b(Xo-X)] oz.a asserts that the proportion

of future observations falling within the given tolerance

limits (for any X), is at least P, and similar statements
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are made repeatedly for different regression lines Y =[a+

b(Xi-X)], then for 100y% of the different regression lines

the statements will be correct". One may reword Lieberman

and Miller's quotation as follows in order to give an

analogous statement for the (y,P)TL in Section III: "If

for a single mean, Y, one asserts that the proportion of

future observations falling within the given tolerance limits

is at least P, and similar statements are repeatedly for

different estimates of the mean, then for 100y% of the

different estimates the statements will be correct."

The authors did not appear to have any strong pre-

ference for any one of their four procedures. They then go

on to say, "The widthsof these simultaneous limits (talking

about the four procedures in general) vary from slightly

larger to about twice as large as the non-simultaneous in-

tervals. This gives a rough indication of the price the ex-

perimenter will have to pay, or should be paying, for simul-

taneity". Many experimenters may feel that these limits

will be too large to be of any practical benefit. In these

situations, depending on the nature of the data, the ex-

perimenter should settle for smaller P and/or smaller y

levels. Smaller or more desirable limits are not necessarily

justified when obtained by a procedure which should not

have been used or a procedure which gives less precise in-

formation.
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The computation of the simultaneous (y,P)TL of the

form Y + k's in 3imple linear regression is given in Pro-Y.x

cedure D (fixed central proportion P for all X's):

Procedure D

1. Y = Y+b(X-X)

2. var(Y) - Y2 (d)

Y (x - )2

where d 1 + x2

3. Syz - (Sxy) z/sxz
9Y.x'A n-2

4. Decide on reasonable levels of P and y

5. k' = q2F(l+y)/2,2,n.2 . + Z(l+p)/2 I(n-2)IXL
'.l~y,22,-2 (lP)12(l-y )12,n-2

6. Y+k's- Y.X
2 7. Steps (1),(2),(5), and (6) should be repeated for

several X values (covering the range of X's). The

loci of the limits may be plotted as a hyperbola with

the fitted line as diameter.

E. Repression Through the Origin

In some situations the relationship between Y and X

is such that when X=O also Y=O. Thus, one is interested in

passing the regression line through the origin, and the re-

quired equation is of the type, PY.x-=X. As in the previous
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case, it is assumed that deviations from the regression line

are normally distributed with a common variance. Of course,

the parameter estimates for this model are not the same as

for the previous model, p = a + OX.
Y.X

The same procedure (Procedure C) for the computation

of non-simultaneous confidence limits may be applied to this

model as was used for the previous model using the different

estimates:

SbX where b = *xy

i
2. 2
2.Var(Y ) = a .[

0 71

3. s' =X YY - ((zx Y

with n-l degrees of freedom (f) 21

4. Confidence limits for +t f

For Xo=O (the orig.n), the above procedure shows a

confidence interval of 0. Initially one may feel that this

is incorrect. However, for this point there is no sampling

n
All E = z

i=5
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variation, the regression equation was "forced" through this

point. It is easy to see that these confidence intervals

increase as X increases. This "fan" appearance of the con-0

fidence limits is unlike the hyperbolic confidence limits ob-

tained for the previous model.

The remainder of the confidence and tolerance in-

tervals can be computed for Y-X= OX using the basic

quantities given in the procedure on the previous page.
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VI. NUHLRICAL LXAM4PLL

A summary of the computing formulas for the various

confidence and tolerance limits in simple linear regression

are given in Table 2. The values from the various distri-

butions have all been given in terms of the F-distribution

in this table.

A numerical example has been presented so that the

reader can appreciate to a fuller extent the various com-

putational procedures, and can graphically see the difference

(if any) in the interval widths for the various procedures.

The example used in this paper is the same as the

numerical example presented in Lieberman & Miller's paper

using 15 hypothetical pairs of values on speed of a missile

(Y) and orifice opening (X). The underlying relationship

between these two variables is of the form

Zxpected speed (miles/hr) = a + 0 orifice opening (inches).

The necessary quantities from the data for the desired com-

putations were [as given in (10)]:

X = 1.3531

-=5219.3

Sx2 = .011966

= -19,041.9 + 17930X

s = 130.5 with f = 13

n = 15
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TABLE 2. COMPUTATIONAL PROCEDURES FOR VARIOUS TYPES OF
CONFIDENCE AND TOLERANCE LIMITS IN SIMPLE LINEAR
REGRESSION

Sour ce 1St e 2 3

2 2_~
Non-simultaneous Y=a+bX, y In
confidence limits YX 8

(Procedure C) =02  (d) n-2

SimultaneousItt
confidence limits

Non-simultaneous 02 (,+d)(P)TL Y.x

Simultaneous
(P )TL

Non-simultaneous2
(y,P)TL a2  (d) S

(Procedure B) Y~X

Simulraneou s
(yP)TL of it U

(Procedure D)

Notes: a 7-bR

b n- SXV

n

SV2  -~2_ E)
n
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(Table 2 continued.)

Step4 5
,Source 4 5--"--

Non- simultaneous
confidence limits Y+4F '/ ax S

(Procedure C) yl,n-2 .X

Simultaneous Y+_,2 s
confidence limits t 2,n-2 /d sy.X

Non-simultaneous(P)T + ,ln2 - sy.x

Simultaneous(P)TL Y+tw2F p,2,n-2 Wr S y- X

Non-simultaneous k=d/F (2F P " 3)d2

(y PT 24 Y+ks

(Procedure B) Y'X

~~imultaneou s k 4 dF( ~

(v, P)TL ... +k's
(Procedure D) +p, F

Note: FAU/ U2 is the X percentage point of the F dis-
X91' 2

tribution with V1 and V2 degrees of freedom.
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It was decided that r' .95 and y = .95 were reasonable

values to use. Figure 3 shows a tolerance band for each of

the six types of limits considered in regression when using

P = .95, y = .95 and n = 15. Generally all tolerance bands

are wide and the price for simultaneity appears high. The

cause of the wide limits is two-fold. One cause is that s

(basic standard deviation) is perhaps larger than what one

would observe under a carefully controlled situation. The

second cause of the wide tolerance limits is that either the

level of confidence (y=.95) or the proportion of the popu-

lation to be included (P=.95) or both were chosen too large

in respect to only the 15 pairs of observations used in the

sample. In other words, one should pay a high price (large

limits) if it is expected that a sample size of 15 should

supply the basic information for perhaps hundreds of future

predictions.

In order to explore the effect of sample size, it

was decided to use the same data under the condition that

it were based on 150 pairs of observations rather than only

15 (essentially 10 Dairs of observations at each point).

Figure 4 shows a band for each of the six types of limits

using P = .95, y = .95 and n= 150. From these data one sees

a clear distinction between confidence and tolerance bands.

The price of simultaneity has become less for both the con-

fidence and the tolerance limits. The non-simultaneous
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(95%) TL do not differ much from the siriltaneous (95%)TL.

The same is true for the simultaneous and non-simultaneous

(95%,95%) M.

In order to see what role the chosen level of Y plays,

it was decided to compute a tolerance band for each of the

six types of limits when using P = .95, y = .75 and n - 15.

(ee Figure 5.) All limits involving y are about 80/ as wide

as the limits when using P=.95, y=.95 and n= 15. Of course,

both (95%TL) are the same as in Figure 3.

Figure 6 shows the limits for a sample size of 150,

P=-.95 and y=.75. Figures 4 and 6 (n=150 for both) are nearly

identical. This shows that for a reasonably large sample

size the chosen level of y has very little influence on the

width of the confidence or tolerance limits.

'ny of the observations made from the sample problem

could also be made by comparing the F-ratio values used in

the computing formulas in Table 2.
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VII. Ri LATLD HATERIAL NOT COVERLD 1N THE PAPER

The material in this paper was limited to two-sided

confidence and tolerance linits apolied to simple means and

simple linear regression lines. Other areas of major interest

are:

L. One-sided confidence and tolerance limits.

2. Application of the limits to multiple (fixed X) linear

regression problems.

3. Application of the limits to simple linear regression

lines where X is measured with error.

4. The simplest of Lieberman & MNiller's procedure on

simultaneous "PM TL with y%" was chosen for this

paper. Further comparisons between the four pro-

cedures under a variety of conditions would be of

interest.

5. What price, if any, does the investigator have to pay

to be able to make tolerance statements at various

values of X not necessarily at the same Level E, but

still have one over-all y confidence level compared

to a fixed P level statement as given in this report

with the same over-all y level of confidence.

6. Inver3e prediction intervals whereby an interval of

X values is found for which the additional Y obs.

could be associated, and one is 100y% confident that
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at least 100 % of these intervals will include the

true associated XO value (population X.).

7. Nonvarametric confidence and tolerance limits.
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